By: Johan
据慢雾安全团队情报,2023 年 3 月 13 日,Ethereum 链上的借贷项目 Euler Finance 遭到攻击,攻击者获利约 2 亿美元。
黑客在攻击完 Euler 后,为了混淆视听逃避追查,转了 100 ETH 给盗取了 Ronin 6.25 亿多美金的黑客拉撒路。拉撒路顺水推舟将计就计,随即给 Euler 黑客发了一条链上加密消息,并回礼了 2 枚 ETH:
消息内容是提示 Euler Exploiter 用 eth-ecies 解密这条消息。
按道理说在公开的环境下,如果 Ronin Exploiter 只是想加密通讯,使?公钥加密是最简单的?案。
公钥加密:
C = {rG, M + rQ} = {C1, C2}
私钥解密:
M = M + r(dG) ? d(rG) = C2 ? d(C1)
其中密? C,公钥 Q,私钥 d,随机数 r,消息 M。协议很简单,加密过程不需要?到的私钥,不存在私钥泄露的路径。
使? eth-ecies 加密是因为?便还是另有所图?随后很快就有?指出 eth-ecies 存在安全漏洞,Ronin Exploiter 是想窃取 Euler Exploiter 的私钥。
孙宇晨:正与FTX一起制定解决方案以支持FTX上Tron系Token:11月10日消息,孙宇晨在其社交平台表示,正与FTX一起制定解决方案以支持FTX上Tron系Token(TRX、BTT、JST、SUN、HT),其团队正在积极工作以避免情况恶化,目前情况可控。
此前报道,11月9日,Huobi官方公告,Huobi、波场DAO宣布将永久1:1刚性承兑所有FTX平台内波场系Token(TRX、BTT、JST、SUN、HT),用户需填写表单并登记Huobi账户,Huobi将以此作为根据,与FTX平台协调对账关于TRX、BTT、JST、SUN、HT的提现事宜。[2022/11/10 12:42:33]
是否真的如此?且让我们先分析?下 eth-ecies 存在的是怎么样的?个漏洞。
经过分析,我们发现 eth-ecies 使?了 "elliptic": "^6.4.0",这是个 Javascript 椭圆曲线库,这个版本的库存在多个安全漏洞,其中?个就是扭曲曲线攻击漏洞(twist attacks),这个漏洞的成因是在计算 ECDH 共享密钥时没有验证对?的公钥是否在曲线上,攻击者可通过构造??群曲线上的公钥,诱导受害者计算共享密钥,从?破解出受害者私钥。
但是这个漏洞的利?难度是很?的,需要有?常契合的场景才能发起攻击,Ronin Exploiter 是否有机会发起扭曲攻击呢?
ECDH 算法是基于椭圆曲线加密的密钥交换算法。它与传统的 Diffie-Hellman (DH) 算法类似,但是使?的是椭圆曲线上的数学运算来实现密钥交换,从?提供更?的安全性。
链外DeFi聚合层Frontier与以太坊推送服务(EPNS)达成战略合作:链外DeFi聚合层Frontier宣布与以太坊推送服务(EPNS)达成战略合作,以支持去中心化通知服务。该合作关系将允许Frontier以平台无关的方式(移动端、网络、钱包等)向用户发送通知。
双方试点项目和合作主要包括:探索Frontier App中的协议使用;实施和消除任何必要的功能,以实现平稳集成;关于构建SDK的技术讨论,该SDK可作为即插即用解决方案部署到所有加密钱包中;未来可能与Frontier钱包整合。[2021/4/29 21:10:05]
下?是 ECDH 算法的步骤:
1. ?成椭圆曲线:在密钥交换之前,通信双?需要选择?个椭圆曲线,该曲线必须满??些数学特性,例如离散对数问题。
2. ?成私钥和公钥:每个通信?都需要?成?对私钥和公钥。私钥是?个随机数,?于计算公钥。公钥是?个点,它在椭圆曲线上,并由私钥计算得出。
3. 交换公钥:通信双?将??的公钥发送给对?。
4. 计算共享密钥:通信双?使?对?发送的公钥和??的私钥计算出?个共享密钥。这个共享密钥可以?于加密通信中的数据,保证通信的机密性。
为了?便描述下? Alice 和 Bob 分别代表上?双?,G 为基点,假设:
Alice 的私钥是 a,则 Alice 公钥是 A = aG;
Bob 的私钥中 b,则 Bob 公钥是 B = bG。
核?知识点在共享密钥计算?法,根据群的乘法交换律,他们只要获取到对?的公钥就可以计算出共享密钥:
波场TRON账户总数突破2400万:3月8日,根据TRONSCAN波场区块链浏览器(https://tronscan.io)最新数据显示,波场TRON账户总数达到24,190,786,突破2400万。波场TRON各项数据稳中前进,波场生态逐渐强大的同时,也将迎来更多交易量。[2021/3/8 18:24:15]
S = aB = a(bG) = b(aG) = bA
如果 Alice 想要刺探 Bob 的私钥,她可以选择?个阶数 q ?常?(点的数量?常少)的曲线点 H(这个点不是对应任何特定私钥的公钥,但是 Bob 并不知道),由于群是循环群,Bob 在计算 S′ = bH 时,他得到的 S′ 将在这些少量点群以内。Alice 不知道 Bob 的私钥 b,但可以通过穷举得到满? S′ = xH 的 x,此时 b ≡ x mod q 。显然 x 很?,最?为 q。
Electroneum成为欧洲区块链组织第十名成员:金色财经报道,加密支付网络Electroneum(ETN)已成为欧洲区块链(Blockchain for Europe)第十名成员。该组织还包括Ripple和Cardano等其他成员,致力于区块链推广和教育,帮助欧盟保持在全球创新前沿。[2020/10/10]
需要多少个扭曲点呢?这取决于每?次选择的阶数 q,需要阶数相乘能超过私钥的最?值,即满?:
如果我每次选择的 q ??点,那么需要交互的次数 n 就可以少?点,但 q 越?意味着穷举的难度越?,所以这?需要根据 Alice 的运算性能做?个取舍。
上?我们分析了 ECDH 算法的?险和攻击原理,我们再回来看 eth-ecies 这个库,实际上它使?的只是?个类似 ECDH 的算法,它在构造共享私钥时使?的是临时密钥,根本不需要?到加密?的私钥,所以并不会对加密?构成?险。
那么有没有可能 Ronin Exploiter 是想利?社会?程学引导 Euler Exploiter 使?其它有问题的?具呢??如我们熟知的 PGP 加密协议?
巧的很,我们很快就发现被?泛使?的开源库 openpgpjs 最新版本 v5.7.0 还在使?了低版本的 "/img/2023525204111/5.jpg" />
故事结束了,我觉得 Ronin Exploiter 使?低版本 elliptic 存在的漏洞去隐秘的窃取 Euler Exploiter 私钥的可能性不?,?于那条链上消息,可能真的是为了共商?计,更进?步的图谋不轨需要更加?超的社会?程学?段了,但 Euler Exploiter 已经警觉。
上?提到了扭曲攻击的原理,实际?程实现上仍然有?个问题需要解决:
1. 如何构造扭曲的点?
2. 当 Bob ?共享密钥 S' 加密消息时,它并不会把 S' 传输给 Alice,因为根据协议 Bob 认为 Alice 是已经知道这个密钥的,那么 Alice 如何获取 S' 呢?
这?以 Curve25519 曲线为例,它的曲线?程是:
我们随意改变其中的?个参数,得到?条新的曲线,?如:
使? sagemath 数学软件来表示:
p = 2**255-19 E = EllipticCurve(GF(p), [0,48666,0,1,0])然后我们计算它的阶数,并对这个阶数进?因式分解:
Grp = E.abelian_group() G = Grp.gens() Gorder = G.order() print( "{0} = {1}".format(Gorder, factor(Gorder)) )计算结果:
...= 2 * 3049 * 14821 * 19442993 * 32947377140686418620740736789682514948650410565397852612808537选择 19442993 这个??适中的数,?中国剩余定理创建?个含有 19442993 个元素的?群:
x = crt([1,0], [19442993, Gorder//19442993]) P1 = x * G到这?我们就得到了第?个扭曲的点,把它当作公钥发送给 Bob,Bob 就可以计算第?个共享密钥:
最终得到的结果可表示为:
使?中国剩余定理即可计算出私钥 b:
x = crt([ x1, x2, x3, x4, x5, x6, x7, x8, x9], [ 19442993, 3645143, 184879577, 5110460161, 15272631587, 208137522259, 64927105657, 60824497, 213156431]) print(x == b) print(hex(x))总结本?我们通过?个不同常理的对话开始研究了椭圆曲线加密算法中的扭曲曲线攻击,分析了漏洞的存在的原因,虽然漏洞利?场景有限,但不失为?个很有价值的漏洞,希望能对?家的学习研究有所启发。
最后,感谢领先的?站式数字资产?托管服务商 Safeheron 提供的专业技术建议。
参考资料:
.https://etherscan.io/tx/0xcf0b3487dc443f1ef92b4fe27ff7f89e07588cdc0e2b37d50adb8158c697cea6
. https://github.com/LimelabsTech/eth-ecies
. GitHub - openpgpjs/openpgpjs: OpenPGP implementation for JavaScript
. Elliptic curve constructor - Elliptic curves
慢雾科技
个人专栏
阅读更多
金色财经 善欧巴
金色早8点
白话区块链
欧科云链
Odaily星球日报
Arcane Labs
MarsBit
深潮TechFlow
BTCStudy
链得得
作者 : starzq.ethTwitter : starzqethPFP 之后,NFT 市场的下一个新叙事是什么?大家都在呼唤更有实用价值的 NFT.
1900/1/1 0:00:00原文作者:0x ShinChan| 加密 KOL原文编译:Felix PANews像Base最近发布的文章中提到的那样.
1900/1/1 0:00:00如果加息25个基点,考虑到近期风险资产价格已纳入这种可能,理应没有太大波动。如果停止加息,风险资产将大幅上涨,btc有望突破3w至3.5w左右,以太坊将破2k至2.5k.
1900/1/1 0:00:00头条▌Coinbase已与加拿大监管机构签署预注册承诺金色财经报道,Coinbase在最新发布的博客文章中表示,已于3月24日与加拿大监管机构签署了一份加强版预注册承诺.
1900/1/1 0:00:00作者:Leo, IOSG Ventures概要:Arweave协议设计从技术上保证永久存储的实现,更适用于高价值数字资产,如NFT metadata的保存数据存储之上,更需要计算.
1900/1/1 0:00:00前言慢雾安全团队开源 -- Web3 项目安全实践要求,提供了详细的实践要求和建议来帮助 Web3 项目研发团队识别和防范这些潜在的安全风险.
1900/1/1 0:00:00