前言
该系列的前一篇文章介绍了Chainlink价格预言机的使用,其目前也被大部分DeFi应用所使用,但依然存在局限性。首先是所支持的Token的覆盖率还不全,尤其是长尾资产,大多还未支持,比如SHIB,目前只在BSC主网有SHIB/USD的PriceFeed,而其它网络的都还没有,连Ethereum的都还没支持。其次,有些资产的偏差阈值较大,价格更新也比较慢,可能长达十几二十个小时才会更新价格,比如BNT。
这时候就需要考虑其它价格预言机了,而UniswapV2和UniswapV3都是不错的选择。
本篇先来聊聊如何使用UniswapV2作为价格预言机。
UniswapV2价格预言机
UniswapV2使用的价格预言机称为TWAP,即时间加权平均价格。不同于链下聚合的Chainlink取自多个不同交易所的数据作为数据源,TWAP的数据源来自于Uniswap自身的交易数据,价格的计算也都是在链上执行的,因此,TWAP属于链上预言机。
TWAP的原理比较简单,首先,在UniswapV2Pair合约中,会存储两个变量price0CumulativeLast和price1CumulativeLast,在_update()函数中会更新这两个变量,其相关代码如下:
contract?UniswapV2Pair?{
??...
??uint32?private?blockTimestampLast;
??uint?public?price0CumulativeLast;
??uint?public?price1CumulativeLast;
??...
??//?update?reserves?and,?on?the?first?call?per?block,?price?accumulators
??function?_update(uint?balance0,?uint?balance1,?uint112?_reserve0,?uint112?_reserve1)?private?{
????...
????uint32?blockTimestamp?=?uint32(block.timestamp?%?2**32);
????uint32?timeElapsed?=?blockTimestamp?-?blockTimestampLast;
????if?(timeElapsed?>?0?&&?_reserve0?!=?0?&&?_reserve1?!=?0)?{
??????//?*?never?overflows,?and?+?overflow?is?desired
??????price0CumulativeLast?+=?uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0))?*?timeElapsed;
??????price1CumulativeLast?+=?uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1))?*?timeElapsed;
????}
????blockTimestampLast?=?blockTimestamp;
????...
??}
}
price0CumulativeLast和price1CumulativeLast分别记录了token0和token1的累计价格。所谓累计价格,其代表的是整个合约历史中每一秒的Uniswap价格总和。且只会在每个区块第一笔交易时执行累加计算,累加的值不是当前区块的第一笔交易的价格,而是在这之前的最后一笔交易的价格,所以至少也是上个区块的价格。取自之前区块的价格,可以大大提高操控价格的成本,所以自然也提高了安全性。
如上图所示,合约的第一个区块为Block122,这时候,价格和时间差都为0,所以累计价格也为?0。到了下一个区块Block123,这时候取自上个区块的最后一口价格10.2,且经过的时间差为7,因此就可以计算出累计价格priceCumulative=10.2*7=71.4。再到下个区块Block124,取自上一口价格10.3,两个区块间的时间差为8,那此时的累计价格就变成了71.4+(10.3*8)=153.8。Block125的时候也同理,上口价格为10.5,区块时间差为5,所以最新的累计价格就变成了153.8+(10.5*5)=206.3。
Chainlink的DeFi价格预言机现已上线Fantom主网:Chainlink的价格信息预言机现在在Fantom网络上运行。得益于与Chainlink的最新集成,“Fantom开发人员现在能够快速开发和扩展他们的DeFi产品和服务,同时用户可以获得一流的安全性、可靠性和可用性,”Fantom首席执行官MichaelKong说。
注:价格预言机是去中心化系统,可帮助去中心化金融(DeFi)平台接收真实世界的数据,例如各种加密货币的价格。[2021/8/19 22:22:49]
有了这个基础之后,就可以计算TWAP了。
固定时间窗口TWAP
计算TWAP的原理也是非常简单,如上图所示,这是计算时间间隔为1小时的TWAP,取自开始和结束时的累计价格和两区块当时的时间戳,两者的累计价格相减,再除以两者之间的时间差,就算出这1小时内的TWAP价格了。
这是TWAP最简单的计算方式,也称为固定时间窗口的TWAP。下面来讲讲具体如何实现。
Uniswap官方也有提供了一个示例代码来计算固定时间窗口的TWAP,其代码放在v2-periphery项目中:
https://github.com/Uniswap/v2-periphery/blob/master/contracts/examples/ExampleOracleSimple.sol
该示例代码也比较简单,我们直接贴上代码看看:
pragma?solidity?=0.6.6;
import?'
????function?update()?external?{
????????(uint?price0Cumulative,?uint?price1Cumulative,?uint32?blockTimestamp)?=
????????????UniswapV2OracleLibrary.currentCumulativePrices(address(pair));
????????uint32?timeElapsed?=?blockTimestamp?-?blockTimestampLast;?//?overflow?is?desired
????????//?ensure?that?at?least?one?full?period?has?passed?since?the?last?update
????????require(timeElapsed?>=?PERIOD,?'ExampleOracleSimple:?PERIOD_NOT_ELAPSED');
????????//?overflow?is?desired,?casting?never?truncates
????????//?cumulative?price?is?in?(uq112x112?price?*?seconds)?units?so?we?simply?wrap?it?after?division?by?time?elapsed
????????price0Average?=?FixedPoint.uq112x112(uint224((price0Cumulative?-?price0CumulativeLast)?/?timeElapsed));
????????price1Average?=?FixedPoint.uq112x112(uint224((price1Cumulative?-?price1CumulativeLast)?/?timeElapsed));
????????price0CumulativeLast?=?price0Cumulative;
????????price1CumulativeLast?=?price1Cumulative;
????????blockTimestampLast?=?blockTimestamp;
????}
????//?note?this?will?always?return?0?before?update?has?been?called?successfully?for?the?first?time.
V神撰文反对基础层价格预言机提案称ETHL1层功能要明确限制:5月12日,以太坊2.0 研究者Justin Drake提出基础层价格预言机提案,其建议在信标链中添加一个简单的喂价服务,以跟踪一小部分关键资产。该服务允许建立完全去中心化的预言机,在每个epoch周期边界(即6.4分钟)为每个跟踪资产产生一个价格。
而对此,以太坊联合创始人Vitalik Buterin撰文表示坚决反对,并提出六大反对理由:
1.这是对区块链技术特性的一个根本性改变。
2.该提案依赖于诚实多数,但在以太坊2.0上面所做的很多事情,从根本上讲是要摆脱诚实多数的假设,并试图在诚实多数失败的情况下创建“第二道防线”。
3.损害了协议的中立性,并为进一步的中立性妥协开辟了一条道路。
4.关闭了预言机设计创新的大门。
5.增加了staking验证者中心化的风险。
6.与基于应用层token的预言机(例如Augur等)相比,其实际上并没有提供更多的安全性。此外他还表示,以太坊生态系统得益于强大的应用层代币生态系统,而不是通过L1层垄断所有重要功能。[2020/5/12]
????function?consult(address?token,?uint?amountIn)?external?view?returns?(uint?amountOut)?{
????????if?(token?==?token0)?{
????????????amountOut?=?price0Average.mul(amountIn).decode144();
????????}?else?{
????????????require(token?==?token1,?'ExampleOracleSimple:?INVALID_TOKEN');
????????????amountOut?=?price1Average.mul(amountIn).decode144();
????????}
????}
}
PERIOD指定为了24小时,说明这个示例计算TWAP的固定时间窗口为24小时,即每隔24小时才更新一次价格。
该示例也只保存一个交易对的价格,即token0-token1的价格。price0Average和price1Average分别就是token0和token1的TWAP价格。比如,token0为WETH,token1为USDC,那price0Average就是WETH对USDC的价格,而price1Average则是USDC对WETH的价格。
update()函数就是更新TWAP价格的函数,这一般需要链下程序的定时任务来触发,按照这个示例的话,就是链下的定时任务需要每隔24小时就定时触发调用update()函数。
update()函数的实现逻辑也和上面所述的公式一致:
读取出当前最新的累计价格和当前的时间戳;
计算出当前时间和上一次更新价格时的时间差timeElapsed,要求该时间差需要达24小时;
根据公式TWAP=(priceCumulative-priceCumulativeLast)/timeElapsed计算得到最新的TWAP,即priceAverage;
更新priceCumulativeLast和blockTimestampLast为当前最新的累计价格和时间戳。
不过,有一点需要注意,因为priceCumulative本身计算存储时是做了左移112位的操作的,所以计算所得的priceAverage也是左移了112位的。
consult()函数则可查询出用TWAP价格计算可兑换的数量。比如,token0为WETH,token1为USDC,假设WETH的价格为3000USDC,查询consult()时,若传入的参数token为token0的地址,amountIn为2,那输出的amountOut则为3000*2=6000,可理解为若支付2WETH,就可根据价格换算成6000USDC。
滑动时间窗口TWAP
固定时间窗口TWAP的原理和实现,比较简单,但其最大的不足就是价格变化不够平滑,时间窗口越长,价格变化就可能会越陡峭。因此,在实际应用中,更多其实是用滑动时间窗口的TWAP。
所谓滑动时间窗口TWAP,就是说,计算TWAP的时间窗口并非固定的,而是滑动的。这种算法的主要原理就是将时间窗口划分为多个时间片段,每过一个时间片段,时间窗口就会往右滑动一格,如下图所示:
标普下调今年美、布两油价格预期:标普全球评级3月22日的一份声明称,将2020年WTI原油和布油价格预期分别下调10美元至25美元/桶和30美元/桶,维持2021年和2022年的油价预期不变。这是标普评级一个月内第二次下调2020年油价预期。其预计俄罗斯和沙特不会重返谈判桌,尽管油价暴跌。欧佩克和俄罗斯的价格战显然将针对成本较高的美国产油商。目前的问题是沙特的产量会有多高,能持续多久。标普预计美国产量不会立即下降,因为对冲操作和之前已钻探了油井。相反,随着支出水平下降,产量应该会在今年年底和明年开始受到很大影响。[2020/3/22]
上图所示的时间窗口为1小时,划分为了6个时间片段,每个时间片段则为10分钟。那每过10分钟,整个时间窗口就会往右滑动一格。而计算TWAP时的公式则没有变,依然还是取自时间窗口的起点和终点。如果时间窗口为24小时,按照固定时间窗口算法,每隔24小时TWAP价格才会更新,但使用滑动时间窗口算法后,假设时间片段为1小时,则TWAP价格是每隔1小时就会更新。
Uniswap官方也同样提供了这种滑动时间窗口TWAP实现的示例代码,其Github地址为:
https://github.com/Uniswap/v2-periphery/blob/master/contracts/examples/ExampleSlidingWindowOracle.sol
我们也贴上代码看看:
pragma?solidity?=0.6.6;
import?'
????address?public?immutable?factory;
????//?the?desired?amount?of?time?over?which?the?moving?average?should?be?computed,?e.g.?24?hours
????uint?public?immutable?windowSize;
????//?the?number?of?observations?stored?for?each?pair,?i.e.?how?many?price?observations?are?stored?for?the?window.
动态 | Max Keiser将BTC价格预期提高至40万美元:华尔街金融分析师、比特币支持者Max Keiser近期在节目中表示,他“正式”将其对比特币的目标价格提高到40万美元:“这是八年来我第一次把它提高到40万美元。这是我的最新正式目标。”(U.Today)[2020/2/17]
????//?as?granularity?increases?from?1,?more?frequent?updates?are?needed,?but?moving?averages?become?more?precise.
????//?averages?are?computed?over?intervals?with?sizes?in?the?range:
????//???
????//?e.g.?if?the?window?size?is?24?hours,?and?the?granularity?is?24,?the?oracle?will?return?the?average?price?for
????//???the?period:
????//???,?now]
????uint8?public?immutable?granularity;
????//?this?is?redundant?with?granularity?and?windowSize,?but?stored?for?gas?savings?&?informational?purposes.
????uint?public?immutable?periodSize;
????//?mapping?from?pair?address?to?a?list?of?price?observations?of?that?pair
????mapping(address?=>?Observation)?public?pairObservations;
????constructor(address?factory_,?uint?windowSize_,?uint8?granularity_)?public?{
????????require(granularity_?>?1,?'SlidingWindowOracle:?GRANULARITY');
????????require(
????????????(periodSize?=?windowSize_?/?granularity_)?*?granularity_?==?windowSize_,
????????????'SlidingWindowOracle:?WINDOW_NOT_EVENLY_DIVISIBLE'
????????);
????????factory?=?factory_;
????????windowSize?=?windowSize_;
????????granularity?=?granularity_;
????}
????//?returns?the?index?of?the?observation?corresponding?to?the?given?timestamp
????function?observationIndexOf(uint?timestamp)?public?view?returns?(uint8?index)?{
????????uint?epochPeriod?=?timestamp?/?periodSize;
????????return?uint8(epochPeriod?%?granularity);
????}
????//?returns?the?observation?from?the?oldest?epoch?(at?the?beginning?of?the?window)?relative?to?the?current?time
????function?getFirstObservationInWindow(address?pair)?private?view?returns?(Observation?storage?firstObservation)?{
????????uint8?observationIndex?=?observationIndexOf(block.timestamp);
????????//?no?overflow?issue.?if?observationIndex?+?1?overflows,?result?is?still?zero.
????????uint8?firstObservationIndex?=?(observationIndex?+?1)?%?granularity;
????????firstObservation?=?pairObservations;
????}
????//?update?the?cumulative?price?for?the?observation?at?the?current?timestamp.?each?observation?is?updated?at?most
????//?once?per?epoch?period.
????function?update(address?tokenA,?address?tokenB)?external?{
????????address?pair?=?UniswapV2Library.pairFor(factory,?tokenA,?tokenB);
????????//?populate?the?array?with?empty?observations?(first?call?only)
????????for?(uint?i?=?pairObservations.length;?i?<?granularity;?i++)?{
????????????pairObservations.push();
????????}
????????//?get?the?observation?for?the?current?period
????????uint8?observationIndex?=?observationIndexOf(block.timestamp);
????????Observation?storage?observation?=?pairObservations;
????????//?we?only?want?to?commit?updates?once?per?period?(i.e.?windowSize?/?granularity)
????????uint?timeElapsed?=?block.timestamp?-?observation.timestamp;
????????if?(timeElapsed?>?periodSize)?{
????????????(uint?price0Cumulative,?uint?price1Cumulative,)?=?UniswapV2OracleLibrary.currentCumulativePrices(pair);
????????????observation.timestamp?=?block.timestamp;
????????????observation.price0Cumulative?=?price0Cumulative;
????????????observation.price1Cumulative?=?price1Cumulative;
????????}
????}
????//?given?the?cumulative?prices?of?the?start?and?end?of?a?period,?and?the?length?of?the?period,?compute?the?average
????//?price?in?terms?of?how?much?amount?out?is?received?for?the?amount?in
????function?computeAmountOut(
????????uint?priceCumulativeStart,?uint?priceCumulativeEnd,
????????uint?timeElapsed,?uint?amountIn
????)?private?pure?returns?(uint?amountOut)?{
????????//?overflow?is?desired.
????????FixedPoint.uq112x112?memory?priceAverage?=?FixedPoint.uq112x112(
????????????uint224((priceCumulativeEnd?-?priceCumulativeStart)?/?timeElapsed)
????????);
????????amountOut?=?priceAverage.mul(amountIn).decode144();
????}
????//?returns?the?amount?out?corresponding?to?the?amount?in?for?a?given?token?using?the?moving?average?over?the?time
????//?range?,?now]
????//?update?must?have?been?called?for?the?bucket?corresponding?to?timestamp?`now?-?windowSize`
????function?consult(address?tokenIn,?uint?amountIn,?address?tokenOut)?external?view?returns?(uint?amountOut)?{
????????address?pair?=?UniswapV2Library.pairFor(factory,?tokenIn,?tokenOut);
????????Observation?storage?firstObservation?=?getFirstObservationInWindow(pair);
????????uint?timeElapsed?=?block.timestamp?-?firstObservation.timestamp;
????????require(timeElapsed?<=?windowSize,?'SlidingWindowOracle:?MISSING_HISTORICAL_OBSERVATION');
????????//?should?never?happen.
????????require(timeElapsed?>=?windowSize?-?periodSize?*?2,?'SlidingWindowOracle:?UNEXPECTED_TIME_ELAPSED');
????????(uint?price0Cumulative,?uint?price1Cumulative,)?=?UniswapV2OracleLibrary.currentCumulativePrices(pair);
????????(address?token0,)?=?UniswapV2Library.sortTokens(tokenIn,?tokenOut);
????????if?(token0?==?tokenIn)?{
????????????return?computeAmountOut(firstObservation.price0Cumulative,?price0Cumulative,?timeElapsed,?amountIn);
????????}?else?{
????????????return?computeAmountOut(firstObservation.price1Cumulative,?price1Cumulative,?timeElapsed,?amountIn);
????????}
????}
}
要实现滑动时间窗口算法,就需要将时间分段,还需要保存每个时间段的priceCumulative。在这实现的示例代码中,定义了结构体Observation,用来保存每个时间片段的数据,包括两个token的priceCumulative和记录的时间点timestamp。还定义了pairObservations用来存储每个pair的Observation数组,而数组实际的长度取决于将整个时间窗口划分为多少个时间片段。
windowSize表示时间窗口大小,比如24小时,granularity是划分的时间片段数量,比如24段,periodSize则是每时间片段的大小,比如1小时,是由windowSize/granularity计算所得。这几个值都在构造函数中进行了初始化。
触发update()函数则更新存储最新时间片段的observation,如时间片段大小为1小时,即每隔1小时就要触发update()函数一次。因为这个示例中是支持多个pair的,所以update()时需要指定所要更新的两个token。
而查询当前TWAP价格的计算就在consult()函数里实现了。首先,先获取到当前时间窗口里的第一个时间片段的observation,也算出当前时间与第一个observation时间的时间差,且读取出当前最新的priceCumulative,之后就在computeAmountOut()函数里计算得到最新的TWAP价格priceAverage,且根据amountIn算出了amountOut并返回。
总结
本文我们主要介绍了被广泛使用的一种链上预言机TWAP,且介绍了固定时间窗口和滑点时间窗口两种算法的TWAP。虽然,TWAP是由Uniswap推出的,但因为很多其他DEX也采用了和Uniswap一样的底层实现,如SushiSwap、PancakeSwap等,所以这些DEX也可以用同样的算法计算出对应的TWAP。
但使用UniswapV2的TWAP,其主要缺陷就是需要链下程序定时触发update()函数,存在维护成本。UniswapV3的TWAP则解决了这个问题,下一篇会来聊聊其具体是如何实现的。
文章首发于「Keegan小钢」公众号:
https://mp.weixin.qq.com/s?__biz=MzA5OTI1NDE0Mw==&mid=2652494441&idx=1&sn=57a97690390b93770c5a906dce4157c8&chksm=8b685079bc1fd96f9ab60cc1b41b8642abf807a13a37c12f05a280be2e03f3a9288a047b5739&token=1584634265&lang=zh_CN#rd
DragonflyCapital是一家拥有超过20亿美元资产管理规模的加密资产投资公司,其管理合伙人Haseeb身兼数职,包括投资者、创始人、软件工程师,甚至是职业扑克玩家.
1900/1/1 0:00:00web3的安全性在很大程度上取决于区块链做出承诺的特殊能力和对人类干预的弹性。但相关的最终性特征--交易通常是不可逆的--使这些软件控制的网络成为攻击者的诱人目标.
1900/1/1 0:00:00随着加密世界中底层区块链技术的不断发展,一些令人感到不可思议的NFT用例正在出现,从流行文化到共享所有权,NFT正在影响着人们的日常生活.
1900/1/1 0:00:00围绕全球热词“元宇宙”,只要你愿意脑洞大开,这里面总有想象不到的空间和聊不尽的话题。4月22日,博鳌亚洲论坛2022年年会“‘元宇宙’离我们有多远?”分论坛上,多位中外领军企业负责人就“元宇宙”.
1900/1/1 0:00:004月27日外媒消息指出,纽约议会的立法者投票通过了一项法案,该法案将阻止某些基于碳的加密采矿业务的扩张。该法案以95票赞成和52票反对通过.
1900/1/1 0:00:00OpenSea收购Gem是非常中心化的手段了,当有竞品冒出,尽管尚且还构不成威胁,垄断龙头企业仍会通过强大的资本实力迅速收购/兼并,将威胁扼杀在苗头之中.
1900/1/1 0:00:00